
AgentJ

Java Network Simulations in NS-2

An Installation and User Manual

A PROTEAN Research Group Project

Naval Research Laboratory, Code 5522.

Editor, Ian Taylor(Ian.J.Taylor@cs.cardiff.ac.uk)
Contributors: Brian Adamson, Ulrich Herberg and Joe Macker

March 13, 2010

Contents

1 Introduction 1
1.1 Motivation for AgentJ . 2
1.2 NS-2, Protolib and AgentJ . 3

2 Installing the AgentJ Toolkit 5
2.1 Installing the C++ Code . 5
2.2 Installing the Java Code . 9
2.3 Additional installation steps for using AgentJ as a routing protocol . . . 9
2.4 Special instructions for 64-bit Linux operating systems 10

3 AgentJ: The Toolkit 11
3.1 A Root Around the AgentJ Directories 11
3.2 From the Java Side to the C Side . 12
3.3 Sending commands to Java Agents . 13

4 AgentJ Examples 17
4.1 TCP Socket Example . 18

4.1.1 TCP Socket Example: The TCL Side 18
4.1.2 TCP Socket Example: The Java Side 19

4.2 Animating NAM Demo . 20
4.2.1 NAM Demo: The TCL Side . 20
4.2.2 NAM Demo: The Java Side . 21

4.3 P2PS Demos . 22
4.3.1 Simple P2PS Demos . 22
4.3.2 Advanced P2PS Demos . 22

i

Chapter 1

Introduction

This chapter provides a background into the motivation behind the development of the
AgentJ framework. AgentJ is essentially a Java Virtual Machine (JVM) for the NS2
simulation environment [1]. It allows multi-thread Java networked applications without
modification to be orchestrated and run within multiple network configurations in the
NS-2 discrete time simulator. This enables Java networked applications to be stress-
tested under certain networked conditions before deployment and new research ideas to be
proved and demonstrated through performance or functional analysis and visualisation.
AgentJ contains a number of UDP, multiucast and TCP examples to demonstrate its
usage and it also contains more complex scenarios that contain multiple sockets and
threads.

AgentJ contains a bytecode rewriting subsystem that swaps user code on-the-fly to use
its own implementations of network, threading and timing functions for use within Ns-2.
AgentJ therefore contains a complete native implementation for the java.net package via
a toolkit called Protolib for integration with NS-2 and also overrides several key objects
within the core JVM including java.lang.Thread and even java.lang.Object. Below are a
list of the key features of the system. AgentJ:

• Manages sockets, network addresses, threads, thread synchronisation (wait and
notify), timers (Thread.sleep+ others)

• Includes a ns-2 DNS server and a re-implementation of the sockets from java.net.*

• Re-implements java.lang.Thread - for overriding t java threads. Since Ns-2 is not
multi-threaded, AgentJ needs to monitor all threads created by the application and
internally control their synchronicity.

• Incorporates a re-implementation of java.lang.Object for Java monitors.

• Consists of a combination of bytecode rewriting and aspect-oriented techniques to
dynamically swap the run-time environment for Java networked applications, by:

– performing a find/replace on the bytecode on various packages, e.g. java.net,
some key classes java.lang.Object and some classes in java.io.

– using Javassist to replace some method-level invocations for wait() and no-
tify(), for overloading start() and run() for thread synchronisation and for
timing operations e.g. java.lang.Thread.sleep().

1

• Includes a number of real-world including demos of P2PS Simulations, a complex
multi-threaded middleware, without modification of the source code.

1.1 Motivation for AgentJ

AgentJ has been developed primarily by Ian Taylor1, who has been working with the
PROTEAN Research Group in NRL for the past six years (with PIs Brian Adamson
and Joe Macker, and earlier also involving Rick Jones). Other key contributors to the
project include Ian Downard2, Ian Wang3 and Andrew Harrison4. The PROTEAN Re-
search Group has used AgentJ in a variety of projects working dynamic networking pro-
tocol and middleware issues including SRSS (Scalable Robust Self-organizing Sensor),
MODAN (Multi-agent systems Operating within Dynamic Ad hoc Networks), and cur-
rently SONOMA (Service Oriented Networking Operating in Mobile Ad hoc) Networks.

One main theme for all of these projects has been to investigate and model, using
network simulation tools, lightweight network application discovery mechanisms suitable
for application in mobile sensor systems, leveraging self-organizing computer communi-
cation networks where possible, based on Mobile Ad-hoc Networking (MANET) routing
protocols which operate using wireless communication links and have no centralized ad-
ministration or control. The PROTEAN group have been considering a complexity of
middleware approaches, from simple network services e.g. network name/address reso-
lution, IP multicast, ANYCAST, to potentially heavy-weight, highly stateful, complex
agent-based architectures. However, the focus is on relatively lightweight (minimally
complex) middleware discovery mechanisms and services which can facilitate publish
and subscribe relationships among a set of sensor application peers participating in an
MANET network. To this end, we developed AgentJ in order to provide a framework
for investigating the possible Java middleware solutions. This work led to some initial
tests investigating common peer-to-peer (P2P) techniques for dynamically discovering
and connecting the mobile sensor nodes.

P2P applications typically create virtual network overlays for connecting users from
highly transient devices and computers behind NAT, firewalls, etc, often referred to as
peers at the edges of the Internet [2]. P2P applications and middleware e.g. Jxta [3],
typically use a combination of discovery techniques in order to connect peers in more
decentralised nature than conventional Web-based applications. In the first instance we
looked at unstructred P2P approaches and the P2PS middleware [4] was selected over
potentially more complex systems such as Jxta, because we had strong in-house support
for the software. The unstructured P2P approach is interesting because it attempts to
address similar unreliable connectivity issues to mobile sensor environments. However, in
this regard sensor nets can be more extreme, where nodes not only disappear/reappear
frequently, but data rates are continuously changing as the sensors move away from the
wireless hubs and other factors, such as battery strength, can affect the type of role the
sensor can play within the network.

1Ian.J.Taylor@cs.cardiff.ac.uk
2iandownard@ieee.org
3ianwangcardiff@googlemail.com
4Andrew.Harrison@cs.cardiff.ac.uk

C++ OTcl

Pure C++

objects

Pure OTcl

objects

C++/OTcl split

objects

ns2

Agents/communication Simulations/scenarios

Figure 1.1: Ns-2 Component Overview

1.2 NS-2, Protolib and AgentJ

NS-2 [1] is a discrete event simulator that supports the link layer upwards on the OSI
stack i.e. the network, transport, session, presentation and application layer, respectively.
It can support both wired and wireless simulations and works on most platforms and
therefore satisfies the main focus of the project, that is, to test out various P2P discovery
and communication mechanisms within various network extremities. NS-2 builds on
years of experience and contains a number of existing transport protocols, written in a
combination of C++ and Tcl. The simulation network configuration and orchestration
is written in Tcl, the Ns-2 engine is written as a mixture of Tcl (oTcl) and C++ and
the underlying protocols are written mostly in C++ with some configuration in Tcl. A
rough schematic is provided in Figure 1.1 illustrating these relationships.

The Ns-2 environment was designed for simulating traffic, rather than deal with the
content of the traffic. Therefore, in the Protolib toolkit [5], we have extended this vision
to implement fairly complete versions of the UDP, Multicast and TCP protocols that
permit the sending of payload traffic, which is necessary for message-based systems like
P2P and publish/subscribe. For TCP in particular, we have implemented the full range
of TCP event handshaking to model real-world TCP behaviour and we have included full
support for TCP servers that can handle multiple connections. AgentJ implements its
native Java networking binding directly to the Protolib toolkit for interfacing with Ns-2.
This is illustrated in Figure 1.2.

Protolib implements a switchable communications layer for several communication
protocols (e.g. TCP, UDP, Multicast etc) in that the same programming interface can be
used to communicate within NS-2, OPNET and a networked environment. To bind to a
particular environment, typically the application just needs to be recompiled. AgentJ re-
implements the Java networking, io and threading layers of Java to work with the Protolib
toolkit, switched in its NS-2 mode. For networked applications, AgentJ can just switch
itself off and Java will default to its conventional native implementations as illustrated.

3rd party Java code

Protolib

Live Network
NS-2 simulated

network

Re-implements java.net and

other classes and invokes the

JNI for Protolib compatibility.

Abstracts NS-2

socket and timer

implementations.

AgentJ
NS-2

events

Java.netJava.lang Java.io

Figure 1.2: An overview of the AgentJ software stack

Since Protolib contains a consistent socket and timer interface to each of its supported
environments it would mean that AgentJ could potentially work in OPNET through
a recompilation of the underlying shared libraries. Future work may investigate this
possibility.

The main thrust of AgentJ lies in the switching between the Java native implemen-
tations of its network core and the implementation for NS-2 in Protolib. This is un-
fortunately non-trivial because there is no such interface in java.net that allows socket
implementations to be swapped whilst using non-IP addresses. The current SocketImpl
and SocketImpl mechanism is tied closely into the IP address format, which is not pos-
sible to extend to include Ns-2 address scheme (that uses simple integers). Therefore,
AgentJ uses bytecode rewriting to provide similar but alternative implementations to cre-
ate hooks into java.net for access to the different addressing scheme and for implementing
a new native implementation for this package.

The result is that Java implementations running in AgentJ are bytecode re-written
at run-time in order to invoke the AgentJ native implementation. This means that no
prior configuration of alteration of the original source code needs to be undertaken to run
these codes in AgentJ. This is a different approach that has been undertaken by other
projects (e.g. J-Sim [6] or PeerSim [7]) which involve rewriting a version of an application
for simulation.

Chapter 2

Installing the AgentJ Toolkit

This chapter describes the installation of AgentJ toolkit and is divided into two sections.
The first describes how to install the native implementation of AgentJ into NS-2, which
involves several stages and modification to the Ns-2 makefile, and the second involves the
somewhat simpler installation of the Java code.

2.1 Installing the C++ Code

AgentJ has two dependencies, which have to be downloaded and installed first before
AgentJ can be added. These are:

1. Ns-2: Full instructions for downloading and installation of ns-2.34 can be found at
the project’s Web site at http://www.isi.edu/nsnam/ns/ or type “ns-2” into Google
and hit “I’m Feeling Lucky”.

2. Protolib: can be downloaded and installed from
http://cs.itd.nrl.navy.mil/work/protolib/ or again “protolib” and “I’m Feeling
Lucky” in Google will also do the trick.

The following steps describe how to install Agentj on top of Ns-2:

Step 1:
Download AgentJ: Get a nightly build at

http://downloads.pf.itd.nrl.navy.mil/agentj/nightly_builds/

Step 2:
First, the Ns2 “Makefile.in” needs to be modified in order to build an AgentJ-enabled

version of the Ns2 environment. The Makefile.in file can be found in the current release in
the ns-2.34 directory of the ns source tree (i.e. ns-allinone-2.33). A copy of my Makefile.in
is provided in the nightly build in the agentj/doc/ns2buildfiles/ns234 directory. Rename
the Makefile that is suitable for your operating system (i.e. mac or Linux) to Makefile.in
and overwrite the ns-2.34 Makefile.in with that file.

5

Step 3:
Set the environment variables. You need to set AGENTJ to the home directory

of AGENTJ and then add the library path to the library path environment variable
(LD LIBRARY PATH), and the JAVA HOME that points to your JDK6, as in the fol-
lowing example for linux. In addition, you have to set your CLASSPATH to include the
AgentJ classes. Please change the path names accordingly.

export AGENTJ=/home/username/Apps/agentj

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AGENTJ/core/lib/

export JAVA_HOME=/usr/java/jdk-1.6.0/

export AGENTJ_CLASSPATH=/path/to/your/java/classes

where:

• AGENTJ: is used to specify the installation directory of the agentj package. This
is used by the Makefile.in NS-2 makefile and also used within the other environment
variables defined here.

• LD LIBRARY PATH: the standard environment variable for specifying where
to find libraries. Here, I extend this to include the AgentJ lib directory.

• JAVA HOME: the standard environment variable for specifying the path to your
JDK 1.6.

• AGENTJ CLASSPATH: this points to the classes (or jar files) containing your
Java applications that you want to run in Ns2.

Note: Steps 4-8 are only necessary if you did not replace the Makefile.in of
ns-2 as explained in step 2, but rather prefer to patch the Makefile manually.

Step 4:
Add the following variables to your Makefile.in file (near the top, just after you inserted

the Protolib variables):

AGENTJ_SRC = $(AGENTJ)/core/src/main/c
AGENTJ_LIB_DIR = $(AGENTJ)/core/lib
AGENTJ_C_SRC = $(AGENTJ_SRC)/agentj
AGENTJ_UTILS = $(AGENTJ_SRC)/utils
AGENTJ_JNI = $(AGENTJ_SRC)/jni

AGENTJ_INCLUDES = -I$(JAVA_HOME)/include -I$(JAVA_HOME)/include/linux \
-I$(AGENTJ_C_SRC) -I$(AGENTJ_UTILS) -I$(AGENTJ_JNI) -I$(AGENTJ_JNI)/jniheaders

AGENTJ_LIB = -L$(JAVA_HOME)/jre/lib/i386/server/ -L$(JAVA_HOME)/jre/lib/i386/ \
-L$(JAVA_HOME)/jre/lib/amd64 -L$(JAVA_HOME)/jre/lib/amd64/server/ -ljvm

AGENTJ_SHARED_LDFLAGS = -shared -fPIC

OBJ_AGENTJ_CPP = $(AGENTJ_UTILS)/LinkedList.o \
$(AGENTJ_C_SRC)/AgentjVirtualMachine.o $(AGENTJ_C_SRC)/Agentj.o \
$(AGENTJ_JNI)/SocketWrapper.o $(AGENTJ_JNI)/JAVMSocketImp.o\
$(AGENTJ_JNI)/JAVMTcpSocket.o $(AGENTJ_JNI)/JAVMDatagramSocket.o\
$(AGENTJ_JNI)/TimerWrapper.o $(AGENTJ_JNI)/JAVMTimer.o \
$(AGENTJ_C_SRC)/AgentJRouter.o \
$(AGENTJ_C_SRC)/Ns2MobileNode.o

Step 5:
Provide paths to the AGENTJ include files by adding AGENTJ INCLUDES to the

“INCLUDES” macro already defined in the ns ”Makefile.in”, for example:

INCLUDES = \
-I. \
@V_INCLUDES@ \
-I./tcp -I./sctp -I./common -I./link -I./queue \
-I./adc -I./apps -I./mac -I./mobile -I./trace \
-I./routing -I./tools -I./classifier -I./mcast \
-I./diffusion3/lib/main -I./diffusion3/lib \
-I./diffusion3/lib/nr -I./diffusion3/ns \
-I./diffusion3/filter_core -I./asim/ -I./qs \
-I./diffserv -I./satellite \
-I./wpan \
$(AGENTJ_INCLUDES)

Step 6:
Add the list of AGENTJ object files to get compiled and linked during the ns build.

For example, modify Makefile.in lines to the following

SRC = $(OBJ_C:.o=.c) $(OBJ_CC:.o=.cc) $(OBJ_AGENTJ_CPP:.o=.cpp) \
$(OBJ_EMULATE_C:.o=.c) $(OBJ_EMULATE_CC:.o=.cc) \
common/tclAppInit.cc common/tkAppInit.cc

OBJ = $(OBJ_C) $(OBJ_CC) $(OBJ_GEN) $(OBJ_COMPAT) $(OBJ_AGENTJ_CPP)

Step 7:
Add the rule for .cpp files to ns-2 “Makefile.in” (NOTE this has already been done

- if you have installed protolib correctly):

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

and add to the ns-2 Makefile.in ‘‘SRC’’ macro definition:

$(OBJ_CPP:.o=.cpp)

Step 8:
Create a shared library - define compile-time SHARED Library flags and libraries

needed for your platform to create a shared library (this is needed for the JNI binding).
On Mac OS 10.x, these are defined as follows:

AGENTJ_LIB = -framework JavaVM
AGENTJ_SHARED_LDFLAGS = -dynamiclib -lresolv

And the new rule for making the shared library should look like this:

libagentj.jnilib: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.jnilib $(AGENTJ_LIB_DIR)

or for Linux, these flags are defined as follows:

AGENTJ_LIB = -L$(JAVA_HOME)/jre/lib/i386/server/ -L$(JAVA_HOME)/jre/lib/i386/ \
-L$(JAVA_HOME)/jre/lib/amd64 -L$(JAVA_HOME)/jre/lib/amd64/server/ -ljvm
AGENTJ_SHARED_LDFLAGS = -shared

and adding AGENTJ LIB to the “LIB” macro already defined in the ns “Makefile.in”,
e.g.:

LIB = \
@V_LIBS@ \
$(AGENTJ_LIB) \
@V_LIB@ \
-lm @LIBS@

and adding a new rule to make the shared library and put it in the correct place. For
Linux, do:

libagentj.so: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.so $(AGENTJ_LIB_DIR)

For Linux, you also need to change the build rule for NS. This should be right under the
line

default for all systems but cygwin

Replace the build rule by:

NS_CPPFLAGS = -DNSLIBNAME=\"libagentj.so\"

NS_LIBS = -ldl

$(NS): libagentj.so common/main-modular.cc

$(LINK) $(NS_CPPFLAGS) $(LDFLAGS) $(LDOUT)$@ \

common/main-modular.cc $(NS_LIBS)

Step 9:
Run

./configure

in the ns source directory to create a new Makefile

Step 10:

Type:

make

to rebuild ns - this creates the static library

Step 11:

If you are using Mac, for compiling the Native Code, do not forget to type:

make libagentj.jnilib

to make the dynamic library needed for the installation of the JNI frameworks.

2.2 Installing the Java Code

Java has one dependency if you choose to command-line install:

1. Apache Maven: for compiling the Java classes we use Apache Maven. Maven
can be found at the apache Web site http://maven.apache.org/ or Google maven if
you’re feeling lucky.

And, so after the C++ part... finally, to compile the Java code, you do the following:

cd $AGENTJ
mvn install

2.3 Additional installation steps for using AgentJ as

a routing protocol

If you want to use your Java routing protocol within AgentJ1, you also have to copy some
files into the Ns2 directory.

cp -r $AGENTJ/doc/ns2buildfiles/ns234/common $AGENTJ/../

cp -r $AGENTJ/doc/ns2buildfiles/ns234/trace $AGENTJ/../

cp -r $AGENTJ/doc/ns2buildfiles/ns234/queue $AGENTJ/../

This allows tracing of packets that are sent using a Java routing protocol.

1Description of how to do so will soon be added in the manual

2.4 Special instructions for 64-bit Linux operating

systems

If you get the following error

relocation R_X86_64_32 against ‘a local symbol’ can not be used

when making a shared object; recompile with -fPIC

you need to add the -fPIC flag to all CFLAGS and LDFLAGS in the Makefile. If
you followed the instruction in section 2.1 and replaced the Makefile.in, ns-2.34 should
already be patched. However, you also need to add -fPIC in the Makefile.in files of tclcl
and otcl (in the nsallinone-2.33 directory).

Chapter 3

AgentJ: The Toolkit

The chapter provides a brief snapshot of the AgentJ toolkit. It provides an overview of
the AgentJ source tree, followed by a high-level overview of the software architecture.
We then provide an explanation of what is required in order to create a Java Ns-2 Agent
for AgentJ.

3.1 A Root Around the AgentJ Directories

AgentJ is made up of a collection of C++ and Java classes. The AgentJ directorty tree is
organized as if it was a Java application. Therefore, within this AgentJ directory, there
is a classes directory (where all classes live), a lib directory (for JAR files plus native
shared libraries), a doc directory (containing this manual) and a src directory (for all
source files), amongst others.

The src directory has a java and c subdirectory containing the Java and native code,
respectively as shown in Figure 3.1. In the C directory there are three directories: agentj,
javm and utils. The agentj directory contains the Ns-2 agent code (AgentJ.cpp) that
implements the core Ns-2 agent capabilities for spawning the AgentJ software and tools.
This class instantiates a AgentjVirtualMachine object, also contained in this directory,
upon first creation, which creates a Java virtual machine for interacting with the Java
codes. It thereafter passes commands via the AgentjVirtualMachine class to be passed
to the Java objects (using a pointer to the Ns-2 C++ agent for identification). The javm
directory contains the classes for the implementation of the Java native interface Java Vir-
tual Machine (JAVM), which bind to the underlying Protolib classes for implementation
for integration into Ns-2.

In the Java directory, we have the corresponding javm directory that contains the Java
side of the AgentJ implementation of java.net, java.io and some java.lang clases. It also
contains the reciprocal of the C++ AgentjVirtualMachine class, called AgentJVirtual-
Machine.java, which contains the entry point static methods called by the C++ class and
the AgentJNode.java class which is the abstract base class implementation of any Java
NS-2 agent implemented by a user. In the root directory, there is also a NAMCommands
class that allows you to annotate messages and colors onto your NAM visualisation dur-
ing execution. There is an examples directory, which is covered in chapter 4 and a thread
directory which contains the Java code for thread synchronisation and the monitoring of
threads during execution.

11

C source code for Agentj

Demonstrations - Java agent implementations

JVM creator and AgentJ C++ agent implemetation

Java source code for Agentj

Native implementation of java.net and timers

Java Virtual Machine - Entry Point for creating

Java agents and registering ids and pointers

Java Agent implementation - users subclass this

Access to NAM GUI - set color, highlight, etc

Java and native bindings for all sockets and timers

Java re-implementation

AgentJ implementation for synchronizing threads

Figure 3.1: The C++ Classes within AgentJ.

3.2 From the Java Side to the C Side

Since AgentJ is a Java environment for Ns-2, a JNI bridge is needed in order to map
between the C++ NS2 agents and the associated Java agents. This bridging mechanism
is required at both the input to the Java initialisation and at its lower communication
layers; that is, first the C++ NS-2 agents need to instantiate and attach Java agents
to the NS-2 C++ agents, then the Java agents need to be able to access the Protolib
interface in order to pass data between themselves in NS-2. In the first case, a C++
environment creates a Java Virtual Machine (JVM) (using the AgentjVirtualMachine.cpp
and AgentJVirtualMachine.java classes) for creating and accessing Java objects. In the
second case, we provide a mapping from java.net to the Protolib C++ libraries using
JNI. The resulting interaction is shown in Figure 3.2. This figure shows how Java is used
by NS-2 to create the overall picture. Each C++ NS2 agent attaches a Java object (i.e.
Java agent) via a call to AgentjVirtualMachine.cpp which invokes the attachJavaAgent
method in AgentJVirtualMachine.java using JNI for registration of the agent.

There could potentially be thousands of NS2 nodes and each one might want to instan-
tiate and use a Java object. Therefore serious scalability issues can be encountered if this
interaction is not slimline enough. In AgentJ, the C++ JVM helper class (AgentjVirtual-
Machine.cpp) therefore only creates one JVM per simulation. The JVM then interfaces
through a singleton AgentJVirtualMachine.java class, which creates and manages the
Java objects. AgentjVirtualMachine contains functionality that can dynamically create a
Java object from a textual representation of its name (e.g. agentj.examples.tcp.SimpleTcp).
The registration request (using attachJavaAgent) results in a Java Hashtable being popu-
lated with an item pair; the C++ NS-2 agent pointer representing the key and AgentJ Java
object representing the object.

JNI

AgentJVirtualMachine

AgentjVirtualMachine

ns2AgentPtr

C++ NS2 Agent

Protolib

NS2 Agent

NS2 Comms
Protolib

NS2 Agent

Java Ns-2 Agent

Attach-agent

ns2AgentPtr

Protolib

NativeImp

JNI

Figure 3.2: An overview of the AgentJ software components

The C++ NS2 agent’s ID is actually its C++ pointer, which is reused later within the
JNI binding to bind the sockets and timers onto the Ns-2 agent that issued the command
to attach them.

3.3 Sending commands to Java Agents

A Java NS2 agent is attached to a C++ NS2 node and is accessed in the same way as
C++ Ns2 agents are accessed, through the command() interface. Thus, specifically, an
AgentJ node is:

A Java object that extends the AgentJObject abstract class (and therefore
implements the required command() method).

Ns-2 Java agents typically provide commands that hook into 3rd party Java applica-
tion in order to provide simulation tests for those applications. You can think of Ns-2
agents as a replacement to a GUI or a command line interface that instructions your
application to do certain things at a certain time with respect to the choreography of
your simulation i.e. to specify what you want to simulate.

Figure 3.3 shows interaction between the simulation orchestration (in TCL), the C++
agent and its associated Java class. The programmer who wishes to use Java functionality
within their NS2 simulations only needs to be concerned within their NS2 TCL script and
their Java class that implements the behaviour they require. The relationship between an
Ns2 agent and its Java class is very similar to the relationship between an NS2 TCL script
and its associated C++ class (i.e. an NS2 agent) which implements the same kind of
interaction through sending text commands between the two. The Java interface employs
the same mechanism to bridge these different programming languages. The C++ agent
(Agentj.cpp) simply acts as a go-between to pass commands across to the appropriate Java

AgentjVirtualMachine.cpp AgentJVirtualMachine

extends

YourClass

YourClass

AgentJObjectAgentj.cpp

script.tcl

JavaC++/TCL

YourClass

Figure 3.3: The interaction between TCL and Java objects through the command()
method in AgentJObject.

object, via the C++ AgentjVirtualMachine and corresponding AgentJVirtualMachine
Java classes.

The command-style interface satisfies some essential AgentJ design conditions:

• Simplicity: the scalability issues and framework for interacting with the Java
objects can easily be hidden behind the container C++ and Java classes - the
programmer does not need to be aware of their presence.

• Familiarity: this mechanism allows communication between the NS2 agent and
any attached Java class through the same familiar interface as NS2 programmers
interface between the TCL scripts and C++ agents now. Users and programmer
do not need to learn a new mechanism.

This interaction is shown in Figure 3.4, which illustrates the two key commands for
attaching and interacting with a Java agent from TCL. Each Ns2 node creates a Java
object of its own choice by using the TCL command:

attach-agentj <class>

where class can be any fully qualified Java class name. For example, to attach the
ChangeDelimiter class to a node, you would use:

attach-agentj agentj.examples.basic.ChangeDelimiter

Once the Java object has been created, commands can be sent by using the TCL
command:

agentj <command> <args>

YourClass.java

extends

AgentJObject.java

simulation.tcl

JavaTCL

attach-agentj <class>

agentj <command> <args>

public String command(String command, String args[]) {

if (command.equals(“go”)) …

}

Figure 3.4: The interface to a Java program for an agent employs a similar interface to
that of NS2 when communicating between the TCL scripts and the C++ classes.

which would invoke the java command with the associated arguments. So, to invoke the
command “hello” on ChangeDelimiter, one would use:

$ns_ at 0.0 "$a1 agentj hello A-String-From-P2"

which would have a corresponding implementation within the ChangeDelimiter object,
like the following:

public boolean command(String command, String args[]) {
if (command.equals("hello")) {

System.out.println("ChangeDelimiter(" + myID + ") has "
+ args.length + " arguments");

for (int i=0; i<args.length; ++i) {
System.out.println("Arg[" + i + "] = " + args[i]);

}
return true;

}
return false;

}

You can try this example out yourself by running the following:

cd $AGENTJ/examples/basic/
ns changeDelimiter.tcl

which should show a number of set-up commands and have an output ending in:

Proto Info: AGENTJ COMMAND: hello, Arguments = A-String-From-P2
changeDelimiter(2) has 4 arguments
Arg[0] = A

Arg[1] = String
Arg[2] = From
Arg[3] = P2

This process is demonstrated further in the next chapter where a number of more
complex examples are provided.

Chapter 4

AgentJ Examples

The AgentJ example TCL scripts for running within Ns-2 can be found in the examples
directory within the AgentJ route. The corresponding Java source code that implements
these demos can be found in the src/java/agentj/examples directory. There are several
demonstration directories that contain the various demos AgentJ has to offer. They
are:

basic: Contains some basic demos that show how agents are created and how commands
are invoked on those agents. This directory for example contains the change de-
limiter demo described in the previous chapter and it also contains some demos
on how to use the timers to schedule timeout triggers at certain points during the
simulation.

udp: Contains a number of demos using UDP, ranging from simple client and server
demos, to using multicast groups, to sending messages to multiple nodes.

tcp: Contains some demos for creating TCP client and server sockets. The demo sim-
pletcp.tcl is described in more detail below. This directory also contains a demo
that combines multicast (for discovery of the nodes) and TCP for transmission of
a message (see multicastAndTcp.tcl).

threads: This directory contains demos that create Java threads for implementing the
conventional way that a Java application would create a non-blocking receive() on
a socket. The demostrations show that an application can spawn multiple threads
and that AgentJ keeps a track of such threads and monitors their lifetime. One
demo also shows the use of creating multiple socket threads and timers to trigger
the points at which the application sends the messages, implemented using the java
Thread.sleep() method.

nam: The NAM application is a visual animator for NS-2 simulations. Typically, within
the TCL script, you would insert commands in order to display labels or change
colours of the nodes during the simulation. The namdemo.tcl example here shows
how to do this from within your Java application itself. This demo is described in
Section 4.2

17

p2ps: Contains a number of P2PS demonstrations that use P2PS in a number of modes
and configurations. The demos range from using simple multicast discovery mech-
anisms to using one and multiple rendezvous peers for implementing caching mech-
anisms for the P2P adverts that are propagated around the network when peers
join.

gui: Contains a demo that implements a graphical user interface on an Ns-2 node to
poll for input. This demonstrates the capability of allow user interactions within
an Ns-2 simulation.

In each directory, there is a README.TXT file, which provides an overview of each
demo in that directory. The examples, described here provide a high-level illustration of
just a few of the examples. It assumes that you have some knowledge of running NS-2
simulations and that you will try these demos as you read this manual for a complete
picture of the TCL and Java parts of the examples. If you are not familiar with NS-2,
you will need to at least try running a few Ns-2 examples before attempting these.

4.1 TCP Socket Example

In the tcp directory, there contains a simple demo that implements the Java socket
example in the Java tutorial. This demonstrates how a programmer can use the blocking
Java API with the sequential nature of the NS-2 simulator. AgentJ detects all blocking
calls and creates a behind the scene non-blocking callback for such calls, which wait for
data to arrive before releasing the blocked code. Hence, a receve() call on a socket, to the
Java application, simply waits (blocks) until data arrives. In AgentJ however, the call
does not block, it releases control back to NS-2 and passes the control to the next node
in the simulation, and waits for data asynchronously in the background.

4.1.1 TCP Socket Example: The TCL Side

The TCL file “simpletcp.tcl” can be found in the examples/tcp directory. It simply creates
two nodes with a drop tail 64kb network link connecting them. It then creates the two
Java agents and invokes commands on those agents as follows:

$ns_ at 0.0 "$p1 attach-agentj agentj.examples.tcp.SimpleTCPServer"
$ns_ at 0.0 "$p2 attach-agentj agentj.examples.tcp.SimpleTCPClient"

$ns_ at 1.0 "$p1 agentj open"
$ns_ at 2.0 "$p1 agentj accept"

$ns_ at 6.0 "$p2 agentj open"
$ns_ at 10.0 "$p2 agentj send"

Note how the “attach-agentj” command, described in the previous chapter is used to
attach the agents. You can attach any Java object that extends AgentJNode to an Ns-2
node using this command. You can then pass commands to those objects as illustrated

here. In this example, we tell the server (p1) to open a server socket and then to call the
accept method on that socket to wait for an incoming connection.

We then tell the client to open a socket and connect to the server and then send data
to the server socket. The result of the simulations will be something like:

SimpleTCPServer, receing Message !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--> Hello server, are you working?
SimpleTCPServer:: received hello message from client, sending a Reply !!!!!!!
SimpleTCPClient, receing Message !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--> Ah, Hello client, nice to make your acquaintance...

As shown above, when the server socket receives the incoming message, it sends a reply
to the client socket indicating that the send was successful. The client socket receives
this message and the simulation ends. This demo is simple but shows the power of how
AgentJ can run unaltered Java code. The Java code here is trimmed replication of the
Java tutorial and contains exactly the same code one would need to implement this over
real world sockets. In fact, the same Java agent code can be run outside of AgentJ to
show this demo running over a real network using the Java runtime.

4.1.2 TCP Socket Example: The Java Side

On the java side, we have two classes:

• “agentj.examples.tcp.SimpleTCPServer” and

• “agentj.examples.tcp.SimpleTCPClient”

found in the agentj/src/java/agentj/examples/tcp directory.
You can view source code directly but the example is equivalent to the Sun Java

Tutorial Knock Knock example for creating a TCP socket connection that can be found
at:

http://java.sun.com/docs/books/tutorial/networking/sockets/clientServer.html

Note that in this source code, the agents simply import the java.net.* classes and
write to those APIs. This is normal for AgentJ but behind the scenes these classes are
bytecode rewritten to use the AgentJ implementations of these classes. With respect to
AgentJ, the only functional difference between the Java tutorial example and the code
here is to set the logging level for the Java code and C++ code. This is set in the
constructor as follows:

setJavaDebugLevel(Level.ERROR);
setNativeDebugLevel(AgentJDebugLevel.error);

which indicates that only errors should be output to the stdout display. An agent can
set this level to whatever it choses.

AgentJ has two logging systems, one for Java and one for the C++ code. The Java
logging uses the Log4J system [8] and the C++ code uses the Protolib logging mechanism,
PLOG. The logging levels available for each are defined in the “org.apache.log4j.Level”
and “AgentJNode” classes respectively.

Figure 4.1: The Output NAM display for the namdemo.tcl simulation

4.2 Animating NAM Demo

This demonstration shows how add NAM display instructions from Java. Within your
Java code directly, you can change the colors of nodes, add markers, add labels and
add trace messages to the NAM animations and AgentJ inserts the commands at the
right point in time in the nam trace file for visualisation. This provides a very powerful
annotation mechanism for simulations because often there are several message exchanges
before the control comes back to TCL, so clearly annotating such messages in TCL is not
enough. Using the AgentJ NAM interface, each programmatical step can be annotated
within the NAM simulation.

4.2.1 NAM Demo: The TCL Side

This example can be found in examples/man/namdemo.tcl. This example also shows how
to attach the agents and pass commands in order to orchestrate the simulation.

$ns_ at 0.0 "$p1 attach-agentj agentj.examples.nam.NamDemo"
$ns_ at 0.0 "$p2 attach-agentj agentj.examples.nam.NamDemo"

$ns_ at 0.0 "$p1 agentj init-server"
$ns_ at 0.0 "$p2 agentj init-client"

$ns_ at 1.0 "$p1 agentj receive"
$ns_ at 1.0 "$p2 agentj send"

The receive and send commands are repeated four times. The resulting NAM display can
be seen in Figure 4.1, which shows the nodes labelled with the current message displayed
in different colors.

4.2.2 NAM Demo: The Java Side

The demo actually demonstrates how to color nodes and add labels during a simulation.
We use a simple multicast demo to ilustrate this. Every time a message is sent it is added
as a label to the NAM animation and colors are changed. The commands are shown in
the send and receive methods below from the NAMDemo class:

NAMCommands nam;

public NamDemo() {
this.setJavaDebugLevel(Level.DEBUG);
this.setNativeDebugLevel(AgentJDebugLevel.detail);
nam = this.getNamCommands();
nam.setAnimationRate(0.02);

}

public void send() {
nam.setNodeColor(NAMCommands.NamColor.chocolate);
try {

String msg = "Message #" + msgcount;
++msgcount;
DatagramPacket hi = new DatagramPacket(msg.getBytes(),msg.length(), group);
nam.setNodeLabel("Sent " + msg, NAMCommands.LabelPosition.down,
NAMCommands.NamColor.red);
s.send(hi);

} catch (IOException e) {
e.printStackTrace();

}
}

public void receive() {
nam.setNodeColor(NAMCommands.NamColor.gold);
byte[] buf = new byte[1000];
DatagramPacket recv = new DatagramPacket(buf, buf.length);
try {

s.receive(recv);
String msg = new String(recv.getData());
nam.setNodeLabel("Received" + msg, NAMCommands.LabelPosition.up,
NAMCommands.NamColor.blue);

} catch (IOException e) {
e.printStackTrace();

}
}

if (command.equals("send")) {
nam.traceAnnotate("Command: Send packet " + msgcount);
send();

4.3 P2PS Demos

P2PS (Peer-to-Peer Simplified) [4] is a lightweight peer-to-peer infrastructure. As the
name suggests, P2PS aims to provide a simple collection of middleware that a develop
can use to write peer-to-peer style applications, hiding the complexity of other similar
architectures such as JXTA [3] and JINI [9].

Briefly, the P2PS infrastructure is based on XML based discovery and communication,
which makes it independent of any implementation language and computing hardware.
P2PS implementations could exist in any language and there is a specification which
can be used to implement such, although at this time we have only built a prototype
Java implementation. Furthermore, communication within P2PS is not tied to any single
transport protocol, such as TCP/IP, and can be extended to include new protocols, such
as Bluetooth or extend existing ones by writing new endpoint resolvers. P2PS has been
designed to operate in highly dynamic, transient environments and provides an overlay
for discovering anything that a peer wants to advertise e.g. specific services, rendezvous
(caching) peers, endpoint protocols etc. P2PS dynamically discovers the capabilities of
other peers at run-time and can negotiate and match how it communicates and how it
organises its peers. This makes P2PS highly suitable for testing out different discovery
mechanisms for two key reasons. First, we can test the discovery mechanisms built
into P2PS (Multicast and Unicast) and secondly, we can easily extend this to include
other protocols by writing new endpoint resolvers. Thus, it provides a core extensible
framework for testing and exploring a number of mechanisms both within a simulated
environment or within a real-world application.

4.3.1 Simple P2PS Demos

This directory contains simulations using P2PS. This work is on-going and experimental,
so run at your own risk :)

1. SimpleP2PS — creates a direct UDP connection between two P2PS nodes

2. P2PSComplex — implements two nodes and uses multicast for discovery. Once
discovered, P2PS figures out which protocols each have and negotiates a connection
between them. they connect and communicate a message.

4.3.2 Advanced P2PS Demos

These following demos use more complex network configurations and use a combination
of discovery mechanisms for discovery of the nodes within the network. The network
configuration consists of a client and server at the far side of the network and either zero,
one, two or three rendezvous nodes in between them to aid in the discovery process. The
demos use unicast or multicast depending on the mode. Below is a brief summary of the
demos:

1. P2PSMulticastDiscovery - multicast discovery demo using rendezvous nodes

2. P2PSMulticastOneRendezvous - multicast discovery using one central independent
rendezvous nodes

Figure 4.2: The network configuration for the Unicast Three Rendezvous P2PS demo.

3. P2PSUnicastDiscovery - unicast discovery using rendezvous nodes

4. P2PSUnicastOneRendezvous - unicast discovery using one central independent ren-
dezvous nodes

5. P2PSUnicastTwoRendezvous - client and server unicast discovery using a cluster
of three connected two rendezvous nodes

6. P2PSUnicastThreeRendezvous - client and server unicast discovery using a cluster
of three connected rendezvous nodes

Figure 4.2 shows a snapshot of a P2PS simulation. In this example, there are three
rendezvous peers in the center of the network, which are accessed by the client and server
on the far sides. The black segments show the data flow between the nodes during this
time-slice of this simulation, and their length indicates the size of that data packet. Go
ahead and try these out yourself, you can find them in src/java/agentj/examples/p2ps.

Bibliography

[1] The Ns2 Simulator. See web site at: http://www.isi.edu/nsnam/ns/.

[2] C. Shirky. Modern P2P Definition. http://www.openp2p.com/pub/a/p2p/
2000/11/24/shirky1-whatisp2p.html, 2000.

[3] Project JXTA, July 2005. http://www.jxta.org.

[4] Ian Wang. P2PS (Peer-to-Peer Simplified). In Proceedings of 13th Annual Mardi Gras Conference -
Frontiers of Grid Applications and Technologies, pages 54–59. Louisiana State University, February
2005.

[5] The Protolib Toolkit. See web site at: http://proteantools.pf.itd.nrl.navy.mil/.

[6] DRCL J-Sim. See web site at: http://www.j-sim.org.

[7] PeerSim: A Peer-to-Peer Simulator. See web site at: http://peersim.sourceforge.net/.

[8] The Log4J Project. http://logging.apache.org/log4j/1.2/index.html.

[9] JINI Specification. http://java.sun.com/products/jini/2 0index.html.

25

	Introduction
	Motivation for AgentJ
	NS-2, Protolib and AgentJ

	Installing the AgentJ Toolkit
	Installing the C++ Code
	Installing the Java Code
	Additional installation steps for using AgentJ as a routing protocol
	Special instructions for 64-bit Linux operating systems

	AgentJ: The Toolkit
	A Root Around the AgentJ Directories
	From the Java Side to the C Side
	Sending commands to Java Agents

	AgentJ Examples
	TCP Socket Example
	TCP Socket Example: The TCL Side
	TCP Socket Example: The Java Side

	Animating NAM Demo
	NAM Demo: The TCL Side
	NAM Demo: The Java Side

	P2PS Demos
	Simple P2PS Demos
	Advanced P2PS Demos

